
Comet Notes Shapes
The exchange of Comet Note between external systems and InDesign® is done via the so-
called notes.xml. A complete description of the notes.xml can be found here.

This document describes how to specify the shape of a note. For geometric and layout
definitions of the Comet Notes, please refer to the above documentation.

Built-In Shapes
There are eight built-in shapes. These shapes correspond to the shapes used in the Preview
app from Apple. Here are screenshots of all build-in shapes:

rectangle
07.12.21, 04:07

??
rectangle

07.12.21, 04:07

Ecte mi, quunte eossi
dolloriat.
Inum net errorit atate-
nis qui qui a aut pora
velias ex eatempo-
sandi officil labore
est, quisciis plic tem
serione rerectem qui

rectangle
07.12.21, 04:07

oval → Muskelprötz
07.12.21, 04:07

oval → Muskelprötz
07.12.21, 04:07

This is my content

oval → Muskelprötz
07.12.21, 04:07

polygon
07.12.21, 04:07

??
polygon

07.12.21, 04:07

This is my content

polygon
07.12.21, 04:07

star → Muskelprötz
07.12.21, 04:07

star → Muskelprötz
07.12.21, 04:07

This
is my con-

tent

star → Muskelprötz
07.12.21, 04:07

!!This is my content !! This is my content

??
This
is my

content

This
is my
con-
tent

https://kb.priint.com/comet/InDesign/Plugins/comments.html#Hinweise2

To assign a default shape to a Come Note, the attribute

 notes.note.shape_type

of the notes.xml is used. The following values are allowed. If the value is empty or undefined,
a free-form note is created.

shape-type Description
rectangle Rectangle or square
oval Circle or ellipse
polygon Uniform hexagon
star Uniform five pointed star
arrow-left Arrow to the indicated direction
arrow-right
arrow-down
arrow-up

If a built-in shape is used, the application (InDesign® or external tool) must be able to create
the shape on its own. The definition of the area element of the note is ignored then and can
be empty.

Here is the complete definition of the notes element of a oval Comet Note.

<note

 id="2"

 type="todo"

 shape_type="oval"

 customerID="0"

 customerID2="0"

 customerID3="0"

 customerStringID=""

 customerData1=""

 customerData2=""

 show_title="1"

 show_state="1"

 show_connect="1"

 visible="1"

>

Generell Design

For the exact appearance of the notes, it is certainly useful to display the notes in InDesign®.
This requires at least the priint:comet plug-ins v4.2 R29555.

Here are the default settings for new notes:

• Opacity 33%

• Solid stroke

• Weight 0.5pt

• Aligned centered

• Opacity 100%

• Rounded corners and mitered cap

• Inset 4pt

All notes except the arrows are provided with a label consisting of title, status and date (But
of course you can turn on/off the title for every note individual).

In rectangular notes every single comment is auto-prompted automatically by default. This
means that each new comment in the note will automatically be prompted by an author/date
label. To save space, the auto-prompt is disabled in all other note types (but can be turned
on of course).

Position and Size

The size of notes is specified in points the attributes

 note.reference.bbox.width

 note.reference.bbox.height

Please note that the size of the un-rotated frame including its stroke is used here.

The built-in shapes are automatically adjusted to the specified size. So a rectangle note of
size 100 x 100 automatically becomes a square and so on.

The position of notes is specified in points the attributes

 note.reference.x

 note.reference.y

The upper left corner of the (possibly rotated) frame is used as the position (see screenshot
above).

The XY coordinates of this point can be calculated using the rotation matrix:

(x') = (cos α -sin α) . (x)y' sin α cos α y

rectangle

Depending on the size and scale of the note, a rectangle (or square) is created. The upper
inset is set to 12 points by default. The text is left asigned.

There should be no difficulty in creating a rectangle shape using SVG.

oval

Depending on the size and scale of the note, an oval (or circle) is created. If nothing else is
specified, the text frame has an inset of 4 points. The text is centered both vertically and
horizontal.

There should be no difficulty in creating a circle shape using SVG.

polygon

Depending on the size and scale of the note, a hexagon with a horizontal line at the top
is created. If nothing else is specified, the text frame has an inset of 4 points. The text is
centered both vertically and horizontal.

There should be plenty of examples in the net of how to construct a hexagon using SVG.

star

Depending on the size and scale of the note, a five pointed star is created. If nothing else
is specified, the text frame has an inset of 4 points. The text is centered both vertically and
horizontal.

There should be plenty of examples in the net of how to construct a five pointed star using
SVG.

arrow-~

Dependering on the size and scale of the note, an arrow with an arrow head to the given
direction is created.

If nothing else is specified, the text frame has an inset of 4 points. The text is centered both
vertically and horizontal.

The thickness of the arrow is half the frame size and the length of the arrow head depends
of the arrows thickness.

Here is what we do to calculate the length a of the arrow head for InDesign® in C++:

PMReal sx (bounds.Left ()); // Abbreviations only

PMReal sy (bounds.Top ());

PMReal ex (bounds.Right());

PMReal ey (bounds.Bottom());

PMReal W (ex - sx);

PMReal H (ey - sy);

PMReal a; // Length of the arrowhead

PMReal h ((W > H) ? H : W);

if (h >= 60.0) a = h / 2.0;

else if (h > 20.0) a = h / (2.0 - ((60.0 - h) / 40.0));

else a = h;

if (a < 0.0) a *= -1.0; // Avoid problems with std::abs

For the arrows itself we implemented two shapes, one for horizotal arrows and one for vertical
arrow. The direction of the arrows we change by a scaling of -1 in the respective direction.

Here is our C++ code for horizontal arrows with the definitions made above for H, W, a, ... :

PMReal h4 (H / 4.0);

pathGeometry->AddPoint (0, PMPoint (sx, sy + 1.0 * h4));

pathGeometry->AddPoint (0, PMPoint (sx, sy + 3.0 * h4));

pathGeometry->AddPoint (0, PMPoint (ex - a, sy + 3.0 * h4));

pathGeometry->AddPoint (0, PMPoint (ex - a, sy + h));

pathGeometry->AddPoint (0, PMPoint (ex, sy + 2.0 * h4)); // Arrow head

pathGeometry->AddPoint (0, PMPoint (ex - a, sy));

pathGeometry->AddPoint (0, PMPoint (ex - a, sy + 1.0 + h4));

pathGeometry->AddPoint (0, PMPoint (sx, sy + 1.0 * h4));

if (IsCommandKeyPressed_ ())

{

 PMMatrix m1, m2;

 m1.ScaleTo (-1.0, 1.0);

 m2.Translate (sx * 2.0 + W, 0.0);

 pathGeometry->TransformPath (m1 * m2);

 fShapeType = cstring ("arrow-left");

}

else

{

 fShapeType = cstring ("arrow-right");

}

Here is our C++ code for vertical arrows with the definitions made above for H, W, a, ... :

PMReal w4 (W / 4.0);

pathGeometry->AddPoint (0, PMPoint (sx + w4, sy));

pathGeometry->AddPoint (0, PMPoint (sx + w4, ey - a));

pathGeometry->AddPoint (0, PMPoint (sx, ey - a));

pathGeometry->AddPoint (0, PMPoint (sx + w4 + w4, ey)); // Arrow head

pathGeometry->AddPoint (0, PMPoint (ex, ey - a));

pathGeometry->AddPoint (0, PMPoint (ex - w4, ey - a));

pathGeometry->AddPoint (0, PMPoint (ex - w4, sy));

pathGeometry->AddPoint (0, PMPoint (sx + w4, sy));

if (IsCommandKeyPressed_ ())

{

 PMMatrix m1, m2;

 m1.ScaleTo (1.0, -1.0);

 m2.Translate (0, sy * 2.0 + H);

 pathGeometry->TransformPath (m1 * m2);

 fShapeType = cstring ("arrow-up");

}

else

{

 fShapeType = cstring ("arrow-down");

}

